Mark Scheme 4728 June 2007

1(i)	$\begin{aligned} & \mathrm{X}=5 \\ & \mathrm{Y}=12 \end{aligned}$	B1 B1 [2]	$\mathrm{X}=-5$ B0. Both may be seen/implied in (ii) No evidence for which value is X or Y available from (ii) award B1 for the pair of values 5 and 12 irrespective of order		
(ii)	$\mathrm{R}^{2}=5^{2}+12^{2}$ Magnitude is 13 N $\tan \theta=12 / 5$ Angle is 67.4°	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[4]} \end{aligned}$	For using $\mathrm{R}^{2}=\mathrm{X}^{2}+\mathrm{Y}^{2}$ Allow 13 from $X=-5$ For using correct angle in a trig expression SR: $p=14.9$ and $Q=11.4$ giving $R=13+/-0.1 \quad B 2$, Angle $=67.5+/-0.5$ B2		
2(i)	$\begin{aligned} & 250+1 / 2(290-250) \\ & t=270 \end{aligned}$	M1 A1 [2]	Use of the ratio 12:12 (may be implied), or $\mathrm{v}=\mathrm{u}+\mathrm{at}$		
(ii)	$\begin{aligned} & \frac{1 / 2 \times 40 \times 12+210 \times 12+1 / 2 \times 20 \times 12-}{1 / 2 \times 20 \times 12 \text { or } 1 / 2 \times 40 \times 12+210 \times 12} \\ & \text { or } 1 / 2 \times(210+250) \times 12 \mathrm{etc} \\ & \text { isplacement is } 2760 \mathrm{~m} \end{aligned}$	M1 M1 A1 [3]	The idea that area represents displacement Correct structure, ie triangle $1+$ rectangle + triangle3 \|triangle4	with triangle3 $=$ \|triangle4	, triangle1 + rectangle2, trapezium $1 \& 2$, etc
(iii)	$\begin{aligned} & \text { appropriate structure, ie triangle + } \\ & \text { rectangle + triangle + \|triangle\|, } \\ & \text { triangle + rectangle }+2 \text { triangle, etc } \\ & \text { Distance is } 3000 \mathrm{~m} \end{aligned}$	M1 A1 [2]	All terms positive Treat candidate doing (ii) in (iii) and (iii) in (ii) as a mis-read.		
3(i)	$\mathrm{R}+\mathrm{Tsin} 72^{\circ}=50 \mathrm{~g}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	An equation with R, T and 50 in linear combination. $\mathrm{R}+0.951 \mathrm{~T}=50 \mathrm{~g}$		
(ii)	$\begin{align*} & \mathrm{T}=50 \mathrm{~g} / \sin 72^{\mathrm{o}} \\ & \mathrm{~T}=515 \tag{AG}\\ & \mathrm{~T}=\mathrm{mg} \\ & \mathrm{~m}=52.6 \end{align*}$	M1 A1 B1 B1 [4]	Using R $=0$ (may be implied) and $T \sin 72^{\circ}=50$ (g) Or better Accept 52.5		
(iii)	$\begin{aligned} & X=T \cos 2^{\circ} \\ & X=159 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & {[2]} \end{aligned}$	Implied by correct answer Or better		

4(i)	In Q4 right to left may be used as the positive sense throughout. $0.18 \times 2-3 m=0$ $\mathrm{m}=0.12$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { [3] } \end{aligned}$	For using Momentum 'before' is zero 3 marks possible if g included consistently
(iia)	$\begin{aligned} & \text { Momentum after } \\ & \quad=-0.18 \times 1.5+1.5 \mathrm{~m} \\ & 0.18 \times 2-3 \mathrm{~m}=-0.18 \times 1.5+1.5 \mathrm{~m} \\ & \mathrm{~m}=0.14 \end{aligned}$	B1 M1 A1 [3]	For using conservation of momentum 3 marks possible if g included consistently
(iib)	$\begin{aligned} & 0.18 \times 2-3 \mathrm{~m} \\ & =(0.18+\mathrm{m}) 1.5 \\ & \mathrm{~m}=0.02 \\ & 0.18 \times 2-3 \mathrm{~m}=-(0.18+\mathrm{m}) 1.5 \\ & \mathrm{~m}=0.42 \end{aligned}$	$\begin{aligned} & \hline \text { B1ft } \\ & \\ & \text { B1 } \\ & \text { B1ft } \\ & \text { B1 } \\ & \text { [4] } \end{aligned}$	ft wrong momentum ‘before’

5(i)	$8.4^{2}-2 \mathrm{gs}_{\max }=0$ Height is 3.6 m (AG)	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	Using $\mathrm{v}^{2}=\mathrm{u}^{2}+/-2 \mathrm{gs}$ with $\mathrm{v}=0$ or $\mathrm{u}=0$
(ii)	$\mathrm{u}=5.6$	M1 A1 [2]	Using $\mathrm{u}^{2}=+/-2 \mathrm{~g}(\mathrm{ans}(\mathrm{i})-2)$
(iii)	EITHER (time when at same height) $\begin{aligned} & \mathrm{s}+/-2=8.4 \mathrm{t}-1 / 2 \mathrm{gt}^{2} \text { and } \\ & (\mathrm{s}+/-2)=5.6 \mathrm{t}-1 / 2 \mathrm{gt}^{2} \\ & \mathrm{t}=5 / 7 \quad(0.714) \\ & \mathrm{v}_{\mathrm{P}}=8.4-0.714 \mathrm{~g} \text { and } \mathrm{v}_{\mathrm{Q}}=5.6-0.714 \mathrm{~g} \\ & \mathrm{v}_{\mathrm{P}}=1.4 \text { and } \mathrm{v}_{\mathrm{Q}}=-1.4 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[6]} \end{aligned}$	Using $\mathrm{s}=\mathrm{ut}+1 / 2$ at ${ }^{2}$ for P and for $\mathrm{Q}, \mathrm{a}=+/-\mathrm{g}$, expressions for s terms must differ Or 8.4t $\left(-1 / 2\right.$ gt $\left.^{2}\right)=5.6 \mathrm{t}\left(-1 / 2\right.$ gt $\left.^{2}\right)+/-2$ Correct sign for $\mathrm{g}, \operatorname{cv}(5.6),+/-2$ in only one equation cao Using $\mathrm{v}=\mathrm{u}+\mathrm{at}$ for P and for $\mathrm{Q}, \mathrm{a}=+/-\mathrm{g}, \mathrm{cv}(\mathrm{t})$ Correct sign for $\mathrm{g}, \mathrm{cv}(5.6)$, candidates answer for t (including sign) cao
	OR (time when at same speed in opposite directions) $\mathrm{v}=8.4-\mathrm{gt}$ and $-\mathrm{v}=5.6-\mathrm{gt}$ $\mathrm{v}=1.4\{$ or $\mathrm{t}=5 / 7(0.714)\}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	Using $\mathrm{v}=\mathrm{u}+\mathrm{at}$ for P and for $\mathrm{Q}, \mathrm{a}=+/-\mathrm{g}$ Correct sign for $\mathrm{g}, \operatorname{cv}(5.6)$ Only one correct answer is needed
	$\begin{aligned} & \text { (with } \mathrm{v}=1.4 \text {) } \\ & 1.4^{2}=8.4^{2}-2 \mathrm{gs}_{\mathrm{p}} \text { and } \end{aligned}$	M1	Using $\mathrm{v}^{2}=\mathrm{u}^{2}+2$ as for P and for $\mathrm{Q}, \mathrm{a}=+/-\mathrm{g}, \mathrm{cv}(\mathrm{v})$
	$\begin{aligned} & (-1.4)^{2}=5.6^{2}-2 \mathrm{gs}_{\mathrm{Q}} \\ & \mathrm{~s}_{\mathrm{P}}=3.5 \text { and } \mathrm{s}_{\mathrm{Q}}=1.5 \\ & \{(\text { with } \mathrm{t}=5 / 7) \end{aligned}$	A1 A1	Correct sign for $\mathrm{g}, \mathrm{cv}(5.6)$, candidate's answer for v (including - for Q) cao
		M1	Using $\mathrm{s}=\mathrm{ut}+1 / 2 \mathrm{at}^{2}$ for P and for $\mathrm{Q}, \mathrm{a}=+/-\mathrm{g}, \mathrm{cv}(\mathrm{t})$
	$\begin{aligned} & \mathrm{s}=5.6 \times 0.714-1 / 2 \mathrm{gx} 0.714^{2} \\ & \mathrm{~s}_{\mathrm{P}}=3.5 \text { and } \mathrm{s}_{\mathrm{Q}}=1.5 \end{aligned}$	A1 A1	Correct sign for $\mathrm{g}, \mathrm{cv}(5.6)$, candidate's answer for t (including sign of t if negative) cao $\}$
	OR (motion related to greatest height and verification) $0=8.4-\mathrm{gt} \text { and } 0=5.6-\mathrm{gt}$ $\mathrm{t}=6 / 7 \text { and } \mathrm{t}=4 / 7$	M1 A1	Using $\mathrm{v}=\mathrm{u}+\mathrm{at} \mathrm{t}$ for P and for $\mathrm{Q}, \mathrm{a}=+/-\mathrm{g}$ Both values correct
	$\begin{aligned} & \mathrm{v}_{\mathrm{P}}=8.4-0.714 \mathrm{~g} \text { and } \mathrm{v}_{\mathrm{Q}}=5.6-0.714 \mathrm{~g} \\ & \left\{0=\mathrm{v}_{\mathrm{P}}-\mathrm{g} / 7 \text { and } \mathrm{v}_{\mathrm{Q}}=0+\mathrm{g} / 7\right\} \end{aligned}$		mid-interval t $(6 / 7+4 / 7) / 2=0.714$ $\{$ Or semi-interval $=6 / 7-4 / 7) / 2=1 / 7\}$
	$\mathrm{v}_{\mathrm{P}}=1.4$ and $\mathrm{v}_{\mathrm{Q}}=-1.4$	A1	cao
	$\begin{gathered} \mathrm{S}_{\mathrm{P}}=8.4 \times 0.714-1 / 2 \mathrm{gx} 0.714^{2} \text { and } \\ \mathrm{S}_{\mathrm{Q}}=5.6 \times 0.714-1 / 2 \mathrm{gx} 0.714^{2} \\ \left\{\mathrm{~S}_{\mathrm{P}}=0 / 7-1 / 2(-\mathrm{g}) \times(1 / 7)^{2}\right. \text { and } \end{gathered}$	M1	$\begin{aligned} & \mathrm{s}=\mathrm{ut}+1 / 2 \mathrm{at}^{2} \text { for } \mathrm{P} \text { and for } \mathrm{Q} \text {, correct sign for } \mathrm{g}, \\ & \operatorname{cv}(5.6) \text { and } \operatorname{cv}(\mathrm{t}) \\ & \left\{\mathrm{s}=\mathrm{vt}-1 / 2 \mathrm{at}^{2} \text { for } \mathrm{P} \text { and } \mathrm{s}=\mathrm{ut}+1 / 2 \mathrm{at}^{2} \text { for } \mathrm{Q}\right\} \end{aligned}$
	$\begin{aligned} & \left.\mathrm{s}_{\mathrm{Q}}=0 / 7+1 / 2 \mathrm{gx}(1 / 7)^{2}\right\} \\ & \mathrm{s}_{\mathrm{P}}=3.5 \quad \mathrm{~s}_{\mathrm{Q}}=1.5 \end{aligned}$	A1	$\{s=v t-1 / 2$ at for P and $\mathrm{s}=\mathrm{ut}$
	$\left\{\mathrm{s}_{\mathrm{P}}=0.1 \mathrm{~s}_{\mathrm{Q}}=0.1\right\}$	A1	cao continued

5(iii) cont	OR (without finding exactly where or when) $\begin{aligned} & \mathrm{v}_{\mathrm{P}}^{2}=8.4^{2}-2 \mathrm{~g}(\mathrm{~s}+/-2) \text { and } \\ & \mathrm{v}_{\mathrm{Q}}^{2}=5.6^{2}-2 \mathrm{~g}[(\mathrm{~s}+/-2)] \end{aligned}$ $v_{P}{ }^{2}=v_{Q}{ }^{2}$ for all values of s so that the speeds are always the same at the same heights. $0=8.4-\mathrm{gt} \text { and } 0=5.6-\mathrm{gt}$ $\mathrm{t}_{\mathrm{P}}=6 / 7$ and $\mathrm{t}_{\mathrm{Q}}=4 / 7$ means there is a time interval when Q has started to descend but P is still rising, and there will be a position where they have the same height but are moving in opposite directions.	M1 A1 A1 M1 A1	Using $\mathrm{v}^{2}=\mathrm{u}^{2}+2$ as for P and for $\mathrm{Q}, \mathrm{a}=+/-\mathrm{g}, \mathrm{cv}(5.6)$, different expressions for s . Correct sign for $\mathrm{g}, \mathrm{cv}(5.6)$, ($\mathrm{s}+/-2$) used only once cao. Verbal explanation essential Using $\mathrm{v}=\mathrm{u}+\mathrm{at} \mathrm{t}$ for P and for $\mathrm{Q}, \mathrm{a}=+/-\mathrm{g}$ Correct sign for g , correct choice for velocity of zero, $\mathrm{cv}(5.6)$ cao. Verbal explanation essential
6(i)	$\begin{aligned} & \mathrm{v}=0.004 \mathrm{t}^{3}-0.12 \mathrm{t}^{2}+1.2 \mathrm{t} \\ & \mathrm{v}(10)=4-12+12=4 \mathrm{~ms}^{-1} \end{aligned}$ (AG)	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	For differentiating s Condone the inclusion of +c Correct formula for $\mathrm{v}(\mathrm{no}+\mathrm{c}$) and $\mathrm{t}=10$ stated sufficient
(ii)	$\begin{align*} & \mathrm{v}=0.8 \mathrm{t}-0.04 \mathrm{t}^{2} \quad(+\mathrm{C}) \\ & 8-4+\mathrm{C}=4 \\ & \mathrm{v}=0.8 \times 20-0.04 \times 20^{2} \quad(+\mathrm{C}) \\ & \mathrm{v}(20)=16-16=0 \tag{AG} \end{align*}$	M1 A1 M1* M1 DA1 [5]	For integrating a Only for using $\mathrm{v}(10)=4$ to find C Dependant on M1*
(iii)	$\begin{aligned} & \mathrm{S}=0.4 \mathrm{t}^{2}-0.04 \mathrm{t}^{3} / 3 \quad(+\mathrm{K}) \\ & \mathrm{s}(10)=10-40+60=30 \end{aligned}$ $40-40 / 3+K=30 \rightarrow K=10 / 3$ $S(20)=160-320 / 3+10 / 3=56.7 \mathrm{~m}$ OR $s(10)=10-40+60=30$ $\mathrm{S}=0.4 \mathrm{t}^{2}-0.04 \mathrm{t}^{3} / 3$ $S(20)-S(10)=26.6,26.7$ displacement is 56.7 m	M1 A1 B1 M1 A1 B1 [6] B1 M1 A1 M1 A1 B1	For integrating v Accept $0.4 \mathrm{t}^{2}-0.013 \mathrm{t}^{3}(+\mathrm{ct}+\mathrm{K}$, must be linear) For using $S(10)=30$ to find K Not if S includes ct term Accept 56.6 to 56.7 , Adding 30 subsequently is not isw, hence B0 For integrating v Accept $0.4 \mathrm{t}^{2}-0.013 \mathrm{t}^{3}$ ($+\mathrm{ct}+\mathrm{K}$, must be linear) Using limits of 10 and 20 (limits 0, 10 M0A0B0) For 53.3-26.7 or better (Note $S(10)=26.7$ is fortuitously correct M0A0B0) Accept 56.6 to 56.7

7(i)	$\mathrm{R}=1.5 \mathrm{gcos} 21^{\circ}$	B1	
		M1	For using $\mathrm{F}=\mu \mathrm{R}$
	Frictional force is 10.98 N (AG)	$\begin{aligned} & \text { A1 } \\ & \hline \end{aligned}$	Note 1.2gcos21=10.98 fortuitously, B0M0A0
(ii)		M1	For obtaining an N2L equation relating to the block in which F, T, m and a are in linear combination or For obtaining an N2L equation relating to the object in which T, m and a are in linear combination
	$\mathrm{T}+1.5 \mathrm{gsin} 21^{\circ}-10.98=1.5 \mathrm{a}$	A2	-A1 for each error to zero
	$1.2 \mathrm{~g}-\mathrm{T}=1.2 \mathrm{a}$	A2	-A1 for each error to zero
		[5]	Error is a wrong/omitted term, failure to substitute a numerical value for a letter (excluding g), excess terms. Minimise error count.
(iii)	$\begin{aligned} & \mathrm{T}-1.5 \mathrm{a}=5.71 \\ & \text { and } 1.2 \mathrm{a}+\mathrm{T}=11.76 \end{aligned}$		For solving the simultaneous equations in T and a for a .
	$\mathrm{a}=2.24 \quad(\mathrm{AG})$	A1	Evidence of solving needed
		[2]	
(iva)	$\mathrm{v}^{2}=2 \times 2.24 \times 2$	M1	For using $\mathrm{v}^{2}=2$ as with cv (a) or 2.24
	Speed of the block is $2.99 \mathrm{~ms}^{-1}$	A1	Accept 3
		[2]	
(ivb)		M1	For using $\mathrm{T}=0$ to find a
	$\mathrm{a}=-3.81$	A1	
	$\mathrm{v}^{2}=2.99^{2}+2 \times(-3.81) \times 0.8$	M1	For using $\mathrm{v}^{2}=\mathrm{u}^{2}+2$ as with $\mathrm{cv}(2.99)$ and $\mathrm{s}=2.8-2$ and any value for a
	Speed of the block is $1.69 \mathrm{~ms}^{-1}$	A1 [4]	Accept art 1.7 from correct work

